Technology Update 2016 Peter Hammond Consultant Physician Harrogate District Hospital

IHS

NHS Foundation Trust

Pump update

	Omnipod patch pump	Animas Vibe*	Medtronic 640G*	Roche Insight	CellNovo patch pump
Pump features					
Weight	25 g	105 g	96 g	122 g	30 g
Basal	0.05 U	0.025 U	0.025 U	0.01 U	0.05 U
increment	(0.05-30)	(0.025-25)	(0.025-35)	(0.02-25)	(0.05-30)
Basal rate/d	24 @ 30 min	12	48	24	24
Basal profiles	7	4	8	5	20
Basal deliver	0.05 u pulse	3 min	10m (0.2-60)	3 min	?0.05u pulse
Extended bolus	30 min steps up to 8 h	30 min steps up to 12 h	30 min steps up to 8 h	15 min steps up to 24 h	30 min steps up to 8 h
Bolus	0.05 U	0.05 U	0.1 U	0.05 U	0.05 U
increments	(max 30)	(max 35)	(max 75)	(max 25)	(max 30)
Occlusion alarm	?	1.5-3h	2-3.8h	< 2h	Max 16h
Insulin vol	200 u	200 u	300 u	160 u	170 u
*Sensor aug	mentation ontic	<u>ا</u>	Harr	ogate and D	istrict Mas

NHS Foundation Trust

Sensor augmentation option

Patch pumps?

Cellnovo, a game changer in insulin delivery

 Cellinovo
 P. 5

 Moderne Discussification Constraints
 18/11/11

Intuitive operation, wireless Internet connectivity and real-time tracking = all industry firsts

• Insulin bolus suggestion via calculator

The perfect combination between a new generation of patch pump and a mobile handset to allow the best accuracy and a 24/7 health remote monitoring

How the cartridge works

Cellnovo Micro-actuator – this device is based on heating and melting of wax

Expansion of wax is very consistent and forces the actuation of a piston

Accuracy per pulse is very consistent, thereby ensuring accurate delivery of insulin.

cellnovo

Kaleido

Bolus Patch

FIG. 1. Insulin bolus-patch (Finesse, Calibra Medical Inc.). (A) Bolus-patch size is $6 \times 3 \times 8$ mm. (B) Bolus-patch is wearable for up to 3 days. (C) Mealtime insulin can be dosed through clothing. (D) Mealtime insulin is administered by actuating the buttons on both sides of the bolus-patch.

Bolus patch vs pen

FIG. 2. Mean daily blood glucose (in mmol/L) in 38 subjects (intent-to-treat population) by treatment sequence at baseline, the 6-week crossover (end of Phase 1), and the 12-week completion (end of Phase 2). Data are mean \pm SE values. The mean daily blood glucose was lower by -0.42 mmol/L using bolus-patch versus pen/syringe (P=0.098). *Bolus-patch is Finesse from Calibra Medical Inc.

Bohannon N et al. Diab Ther Tech 2011;13:1031-7

Adverse effects (1)

TABLE 1. CLINICAL FEATURES, TECHNOLOGY, AND INSULINS USED BY SUBJECTS COMPLETING THE SURVEY OF COMPLICATIONS OF CONTINUOUS SUBCUTANEOUS INSULIN INFUSION

Parameter	Value
Number of subjects	92
Age (years)	45.3 ± 12.8
Mean (range) diabetes duration (years)	28.8±12.8 (2.0-67.0)
Median (range) duration of CSII (years)	3.3 (0.5–32.0)
Mean (range) duration of infusion set use (days)	3.2±0.7 (2.0-6)
Pump manufacturer (% of subjects)	
Medtronic	84.8
Roche	9.8
Animas	5.4
Pump insulin (% of subjects)	
Aspart	55.8
Lispro	40.7
Glulisine	3.5
Infusion set (% of subjects)	
Medtronic Quick-Set ^a	72.0
Medtronic Mio ^a	6.5
Animas Inset ^b	5.4
ACCU-CHEK FlexLink ^b	4.3
Medtronic Silhouette ^a	4.3
Medtronic Sure-T ^b	3.2
ACCU-CHEK Tender ^a	3.2
ACCU-CHEK Rapid-Db	1.1

^aTeflon.

^bMetal.

CSII, continuous subcutaneous insulin infusion.

TABLE 2. INFUSION SET AND INFUSION SITE PROBLEMS

Problem	%
Infusion set	
Kinking	64.1
Frequent kinking	12
Blockage	54.3
Frequent blockage	9.8
Leakage	16.3
Infusion site	
Lipohypertrophy	26.1
Site infection	17.4
Bleeding or bruising	14.1
Pain or soreness	9.8
Adhesion problems	5.4
Irritation or itchiness	5.4

Data are percentages of all subjects reporting problem at some time during pump treatment.

Pickup JC et al. Diab Tech Ther 2014;16:145-149

Adverse effects (2)

TABLE 3. RELATIVE RISK FOR INFUSION SET BLOCKAGE Associated with Various Factors

Risk factor	RR	P value
>3 days set use with lispro	1.71 (1.03-2.85)	0.07
Insulin analog use, any duration		
Lispro	1.39 (0.95-2.10)	0.12
Aspart	0.76 (0.51-1.13)	0.27
Glulisine	0.62(0.12 - 3.12)	0.60
Kinking	1.36 (0.89-2.10)	0.17
Teflon cannula use	0.76 (0.51-1.12)	0.28

RR, relative risk.

TABLE 4. PUMP PROBLEMS

Malfunction	%
Any pump malfunction (% of patients)	48
Types (% of all malfunctions)	
Pump stop/no delivery	26
Keypad/button problem	12
Rewind malfunction	12
Battery compartment problem	11
Belt clip broken	6
Accidental damage by user	6
Display problem	5
Software problem	5
Other (e.g., no cartridge detected, continuous alarm, O-ring leak, unknown)	17

Data are percentages of subjects reporting.

Pump dosing accuracy

Figure 3. Single-dose accuracy. The percentage of measured deliveries (n = 12,000 for OneTouch Ping, n = 11,947 for Accu-Chek Combo, n = 11,987 for Paradigm Revel/Veo, and n = 5977 for OmniPod) that were outside the accuracy threshold of $\pm 5\%$, $\pm 10\%$, $\pm 15\%$, and $\pm 20\%$ with fixed basal rate delivery. Accuracy increases with lower percentage outside threshold.

Figure 4. Averaged-dose accuracy. The graph shows the percentage of measured deliveries (n = 12,000 for OneTouch Ping, n = 11,947 for Accu-Chek Combo, n = 11,987 for Paradigm Revel/Veo, and n = 5977 for OmniPod) that were outside the accuracy threshold of $\pm 15\%$ averaged over the specified time interval. Accuracy increases with lower percentage outside threshold.

Jahn LG et al. J Diab Sci Tech 2013;7:1011-20

CSII: sustained improvement

Beato-Vibora P et al. Diabet Med. 2015;Online first

NHS Foundation Trust

CSII and mortality

Harrogate and District NHS Foundation Trust

Steineck I et al. BMJ 2015;350:h3234

CSII and mortality

	No with events (%)	Events/1000 person years	Hazard ratio* (95% CI)	P value	
Major endpoints					
Fatal/non-fatal con	ronary heart disease:				
MDIs 15727/1058 (6.7) 10.7 1.0					
Pump	2441/97 (4.0)	6.2	0.81 (0.66 to1.01)	- 0.05	
Fatal/non-fatal car	rdiovascular disease:				
MDIs	15727/1294 (8.2)	13.1	1.0	0.2	
Pump	2441/129 (5.3)	8.3	0.88 (0.73 to1.06)	- 0.2	
Fatal cardiovascul	ar disease:				
MDIs 15727/517 (3.3) 5.1 1.0					
Pump	2441/29 (1.2)	1.8	0.58 (0.40 to 0.85)	- 0.005	
Total mortality:					
MDIs	15 727/1109 (7.1) 11.0 1.0		0.007		
Pump	2441/83 (3.4)	5.3	0.73 (0.58 to 0.92)	- 0.007	
Secondary endpo	pints				
Fatal coronary hea	rt disease:				
MDIs	15 727/453 (2.9)	4.5	1.0	0.007	
Pump	2441/24 (1.0)	1.5	0.55 (0.36 to 0.83)	- 0.004	
Fatal stroke:					
MDIs	15 727/79 (0.5)	0.8	1.0	0.4	
Pump	Pump 2441/5 (0.2)		0.67 (0.27 to 1.67)	- 0.4	
Non-cardiovascula	ar disease mortality:				
MDIs	15 722/592 (3.8)	5.9	1.0	0.2	
Pump	2441/54 (2.2)	3.4	0.86 (0.64 to 1.13)	0.3	

Steineck I et al. BMJ 2015;350:h3234

Harrogate and District NHS Foundation Trust

CSII and hypos

Harrogate and District NHS Foundation Trust

Steineck I et al. BMJ 2015;350:h3234

OpT2mise

Figure 2: Changes in glycated haemoglobin Error bars are 95% CIs. MDI-multiple daily injection.

Figure 3: Cumulative distribution of glycated haemoglobin at 6 months (A) and total daily insulin dose (B) Error bars are 95% Cls. MDI-multiple daily injection.

Reznik Y et al, Lancet 2014; published online July 3rd

CGM update

NG17: CGM

- Do not offer real-time continuous glucose monitoring routinely to adults with type 1 diabetes.
- Consider real-time continuous glucose monitoring for adults with type 1 diabetes who are willing to commit to using it at least 70% of the time and to calibrate it as needed, and who have any of the following despite optimised use of insulin therapy and conventional blood glucose monitoring:
 - More than 1 episode a year of severe hypoglycaemia with no obviously preventable precipitating cause.
 - Complete loss of awareness of hypoglycaemia.
 - Frequent (more than 2 episodes a week) asymptomatic hypoglycaemia that is causing problems with daily activities.
 - Extreme fear of hypoglycaemia.
 - Hyperglycaemia (HbA1c level of 75 mmol/mol [9%] or higher) that persists despite testing at least 10 times a day (see recommendations 1.6.11 and 1.6.12). Continue real-time continuous glucose monitoring only if HbA1c can be sustained at or below 53 mmol/mol (7%) and/or there has been a fall in HbA1c of 27 mmol/mol (2.5%) or more

	Guardian RT	640G Smart guard	DexCom G4 Platinum	Freestyle Navigator II
Sensor life	6 da	ays	7 days	5 days
Alarms	Mult	iple	1 high, low and trend	High, low and projected
Predictive	Ye	S	No	Yes
Trends	Ye	S	Yes	Yes
Rate change	Ye	S	No	Yes
Calibration	12 h	nrly	2h, then 12 hrly	1, 2, 10, 24, 72 h
MARD	139	%	12.6%	11.8%

MARD

Mean Absolute Relative Difference

- Measured as the difference between sensor and reference blood glucose values taken at the same time, expressed as a percentage.
- The lower the MARD, the more accurate a sensor glucose value is considered.
- It is an average of all the readings
- It is the industry standard for CGM accuracy

MARD Ranges

Page 704.

Journal of Diabetes Science and Technology 8.4 (2014): 699-708.

G4 vs Enlite (1)

- Over 6 days Dexcom did not display data over six days for 13 minutes, Enlite for 98.2 minutes.
- Dexcom had "greater accuracy in the hypoglycemic and euglycemic ranges."

G4 vs Enlite (2)

- 1) Patients preferred G4 in their daily lives. (79.1 vs. 42.1 Enlite).
- 2) Patients prefer G4 Platinum over Enlite in 12 out of 13 categories, so tend to wear it more and get better results.
- 3) Greater accuracy in the hypoglycemic and euglycemic range for more optimal insulin dosing; more false alarms with Enlite.

Matuleviciene et al "Diabe Tech Ther.2014;16:Web.

Trend accuracy

CBG meter accuracy

Figure 2. Number of BG ranges in which the new accuracy limits were met. Triangles mark GMS that fulfilled overall accuracy requirements shown in Table 1.

Hasslacher C et al. J Diab Sci Tech. 2014;8:466-72

CBG meter MARD

 TABLE 1. MEAN ABSOLUTE DIFFERENCE AND MEAN ABSOLUTE RELATIVE DIFFERENCE BETWEEN MEASUREMENTS

 with the Different Blood Glucose Meters and the YSI 2300

	Mean bias		MARD				
Blood glucose meter	mg/dL	%	%	95% CI	SD (%)	Subjects (n)	Measurements (n)
FreeStyle Lite FreeStyle	0.8	1.0	4.9	4.1 to 5.7	7.5	240	480
Freedom Lite	0.3	1.0	5.5	4.8 to 6.3	8.5	244	488
Accu-Chek Aviva	7.2	5.3	6.8	6.1 to 7.6	7.5	252	504
Contour	-1.2	-0.2	9.0	8.3 to 9.8	12.0	255	510
OneTouch UltraEasy	6.3	4.6	9.7	8.9 to 10.4	12.1	246	492

CI, confidence interval; MARD, mean absolute relative difference; n, number.

Flash glucose sensing: Freestyle Libre

The FreeStyle Libre reader

software

Advanced Daily Patterns

Ambulatory glucose profile (AGP)

Implantable sensor

Reference glucose range (mg/dl)	Number of paired system-reference readings	MARD ^a /MAD ^b	
≤70	116	9.6 mg/dl	
71-180	2101	11.4%	
>180	1369	11.0%	

5:17(10):1-7 Harrogate and District MHS

DeHennis A et al. J Diab Sci Tech 2015;9:951-6; Want et al. Diabet Ther Tech 2015;17(10):1-7

NHS Foundation Trust

Medtronic DUO

The transmitter must be within 6 feet (183 centimeters) of the insulin pump in order to communicate sensor readings.

Predictive low glucose suspend Medtronic 640G Smart Guard

Predictive low glucose suspend

- Insulin infusion suspended when BG falling and anticipated to be 0.5 mmol/l above hypoglycaemia threshold within 30 minutes
- Insulin infusion suspended for up to 120 minutes but restarts automatically when BG rises 0.5 mmol/l above hypoglycaemia threshold

Danne T et al Diab Tech Ther 2014;16:6 (online)

Harrogate and District MHS

PILGRIM

80% hypoglycaemia prevention with exercise

Danne T et al Diab Tech Ther 2014;16:6 (online)

SmartGuard Concept

The SmartGuard technology has been designed to help protect from hypoglycaemia and avoid the hyperglycemic rebound.

Without

SmartGuard

With SmartGuard

> Predicted Trend

GO

How SmartGuard[™] Works

Once resumed manually or based on sensor glucose, basal insulin delivery will not be resuspended for a minimum of 30 minutes.

STOP SmartGuard[™] suspends basal delivery toreduce hypoglycaemia if sensor glucose is:

- Less than 70 mg/dL above the low limit AND
- Predicted to approach the low limit within 30 minutes

Suspended basal insulin delivery can **resume** if:

>Your patient manually resumes OR

Sensor glucose is above the low limit and trending upward and insulin delivery has been suspended for a minimum of 30 minutes OR

Insulin delivery has been suspended for 2 hours

SmartGuard in Action: Managing Hypoglycemia

Predictive suspend events

NHS Foundation Trust

640G – hypo avoidance

Choudhary P et al. Diab Ther Tech 2016; e pub ahead of print

Harrogate and District MHS

Prevention of hypoglycemia

MiniMed 640G on Social Media – What the world is saying....

Been a busy night for #MiniMed640G @MedtronicUK doing the hard work 😊

Reply to Steve Roebuck, MedtronicUK

Living the #MiniMed640G dream. SmartGuard intervention at 4.8 and dropping followed by matching BG after resumption!

Reply to Dave Sowerby

Note: 4.8 mmol/L is equivalent to 86.4 mg/dL

4 low glucose suspends over the last 24 hours. The #MiniMed640G is great when I'm on placement.

Reply to Laura / Ninja

Note: 11.6 mmol/L is equivalent to 208.8 mg/dL

typical day with **#SmartGuard** working 2-3 times with no alarms allowing good control with no hypo! **#MiniMed640G** Boom!

09/03/2015 21:55

Hypo-Hyper Minimiser

Figure 2. Average Hypoglycemia-Hyperglycemia Minimizer (HHM) System results for all participants (n = 13). Upper plot: Glucose levels (mean ± standard deviation) based on continuous glucose monitoring (CGM). Also shown are the nominal meal times. The shaded area is the approximately normoglycemic range (70-180 mg/dl). Lower plot: HHM System-determined insulin delivered during closed-loop control, as a percentage difference from the participants' respective basal rates (mean ± standard deviation).

Finan DA et al. J Diab Sci Tech 2014;8:35-42

Connectivity

Guardian Connect

